Visual Classification by a Hierarchy of Extended Fragments

نویسندگان

  • Shimon Ullman
  • Boris Epshtein
چکیده

The chapter describes visual classification by a hierarchy of semantic fragments. In fragment-based classification, objects within a class are represented by common sub-structures selected during training. The chapter describes two extensions to the basic fragment-based scheme. The first extension is the extraction and use of feature hierarchies. We describe a method that automatically constructs complete feature hierarchies from image examples, and show that features constructed hierarchically are significantly more informative and better for classification compared with similar non-hierarchical features. The second extension is the use of so-called semantic fragments to represent object parts. The goal of a semantic fragment is to represent the different possible appearances of a given object part. The visual appearance of such object parts can differ substantially, and therefore traditional image similarity-based methods are inappropriate for the task. We show how the method can automatically learn the part structure of a new domain, identify the main parts, and how their appearance changes across objects in the class. We discuss the implications of these extensions to object classification and recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object recognition and segmentation by a fragment-based hierarchy.

How do we learn to recognize visual categories, such as dogs and cats? Somehow, the brain uses limited variable examples to extract the essential characteristics of new visual categories. Here, I describe an approach to category learning and recognition that is based on recent computational advances. In this approach, objects are represented by a hierarchy of fragments that are extracted during...

متن کامل

A New Extended Analytical Hierarchy Process Technique with Incomplete Interval-valued Information for Risk Assessment in IT Outsourcing

Information technology (IT) outsourcing has been recognized as a new methodology in many organizations. Yet making an appropriate decision with regard to selection and use of these methodologies may impose uncertainties and risks. Estimating the occurrence probability of risks and their impacts organizations goals may reduce their threats. In this study, an extended analytical hierarchical proc...

متن کامل

Application of Analytic Hierarchy Process in Selecting the Most Appropriate Method for Wastewater Treatment in Meybod Villages in Yazd, 2018: A Descriptive Study

Background and Objectives: Today, use of wastewater treatment systems in urban and rural areas is necessary to protect the health of communities, prevent water resources pollution and reuse of wastewater. Therefore, this study aimed to select the best wastewater treatment method for Meybod villages in Yazd based on analytic hierarchy process (AHP). Materials & Methods: This descriptive study w...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Hierarchical Multi-label Classification using Fully Associative Ensemble Learning

Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural information between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers the structural information embedded in the class hierarchy, and uses it to improve classification performance. In this paper, we propose a local hierarchical ensemble framework fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006